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Abstract-In laser and electron beam surface processing the knowledge of the thermal field and, particu- 
larly, of the maximum temperatures attained is a very important issue. The two-dimensional solution for 
a uniform strip heat source moving at a constant velocity along the surface of a semi-infinite body is 
analysed. A comparison between the approximate one-dimensional and the two-dimensional models is 
presented. The ratio between the maximum temperature values is given by the two models and the time at 
which they are reached are reported. Guidelines for estimating the range of variables within which the 

results of the two models are in a reasonable agreement are given. 

INTRODUCTION 

THE THEORETICAL determination of the temperature 
field in a semi-infinite solid heated by a moving heat 
source is a well-known problem in heat conduction 
and various solutions are available for different source 
geometries [l-7]. Although the aforementioned prob- 
lem may be encountered in many applications, it is 
typical in laser and electron beam surface trans- 
formation hardening of metallic materials. In these 
processes a suitably shaped beam rapidly heats only 
a thin layer of the material surface ; then the heat flows 
towards the cool bulk by conduction and the surface 
quench occurs [8]. The layer to be hardened (typically 
0. l-l mm) must reach a temperature greater than the 
material dynamic austenite transformation tem- 
perature. Thus, the fundamental purpose of the heat 
conduction analysis is to estimate the maximum tem- 
perature attained as a function of the depth. 

For a uniform strip heat source moving at a 
constant velocity along the solid surface, in some 
conditions, the quasi-steady state two-dimensional 
(2-D) exact solution can be approximated by the 
one-dimensional (1 -D) semi-infinite solution with a 
stationary constant source impinging for an amount 
of time equal to the interaction time of the actual 
moving source [9]. The latter, simpler, solution can be 
profitably used provided the heat diffusion length is 
small in comparison with the strip width. Never- 
theless, under many circumstances a better accuracy 
is required and therefore a deeper insight into the 
differences between the two models is useful. 

La Rocca [9] gives a detailed analysis of the 1-D 
models for both a semi-infinite body and a finite slab. 

In ref. [9] new dimensionless physically meaningful 
parameters are introduced and the range of appli- 
cability of the models are extensively investigated. 

Cline and Anthony [5] present the analytical solu- 

tion for a Gaussian source moving at a constant ve- 
locity and correlate the cooling rate distribution and 
the depth of melting with the size, the velocity and 
the power level of the spot. However, they make no 
comparison with the results of simpler models. 

Still with reference to a Gaussian moving source, 

Chen and Lee [6] demonstrate the existence of a criti- 
cal velocity below which the effects of the source 
motion become practically negligible and the tem- 
perature field is reasonably coincident with the one 
due to a stationary source. 

Sanders [7] presents the conditions under which the 

solution for a Gaussian moving spot as a function of 
its normalized velocity can be used. At low speed his 
solution approximates the one obtained by Lax [lo] 
for a stationary spot while at high speed it approaches 
the 1-D solution. 

To the authors’ knowledge, no accurate com- 

parison between the l- and 2-D solution has yet been 
made. In ref. [ 1 l] 2-D effects are said to become notice- 
able when the ratio of the spot velocity to the rate of 
heat diffusion in the solid is less than a given value 
(3.5). Moreover, the effects of depth are not con- 
sidered. 

In this paper l- and 2-D solutions are compared 
and, for any depth, both the ratio of the maximum 
temperatures evaluated by the two solutions and the 
time at which they occur are provided. Results are 
presented as a function of dimensionless parameters 
in diagrams and tables. 

99 



100 R. FESTA et al. 

b 
B 

k 

KO 

I 

4 
R 

t 
T 
Tf 

V 
V 
& z 

NOMENCLATURE 

hot spot half-width X, 2 dimensionless Cartesian coordinates, 
dimensionless parameter, equations equations @a). 

(8a) 
thermal conductivity Greek symbols 
modified Bessel function of the second 
kind, order zero ; 

thermal diffusivity 
variable, equations (A2) 

hot spot length in ref. [2] Y variable, equations (A2) 
heat flux i variable, equations (8a) 
dimensionless ratio, equation (13) 0 time, equations (1) 
time p variable, equation (5) 
temperature dimensionless time, equations (8a) 
dimensionless temperature, : roots of equations (17) and (19) 
equation (8b) r dwell time. 
heat source velocity 
heat source vectorial velocity Subscripts 
fixed Cartesian coordinates 1-D one-dimensional 

x*, z* moving Cartesian coordinates 2-D two-dimensional. 

GEOMETRY AND MATHEMATICAL 

DESCRIPTION 

Consider a strip heat source, moving at a constant 
relative velocity v over the surface of a semi-infinite 
body. Geometry and coordinates are schematically 
shown in Fig. 1. The body is isotropic and homo- 
geneous ; it is conveniently described by using the 
fixed rectangular coordinates x and z. The surface 
z = 0 is thermally insulated except over the region 
vt - b < x < b + vt at time t, where a constant uniform 
heat flux is postulated, qo, with 2b the width of the 
hot strip. From the moving heat source theory [3], by 
a Galilean coordinates transform 

x*=x-at; z*=z; lj=t (1) 

a mathematical statement of the problem is the solu- 
tion of 

a*T a*T v aT 1 aT 
ax*‘+==-aax*+-- u aQ 

for]x*)<co, O<z*<co, 0>0 (2a) 

T(x*,z*,O)=O for]x*J< co, O<z*< a (2b) 

_kaT(x*,o,e) 
az* = 4x*) 

for]x*) <b 

for(x*]>b’ 
8 > 0 (2c) 

T(x*, z*, 0) = 0 for x* + + co, z*+ CO, e> 0. 

(24 

With initial condition (2b), values of Tare the tem- 
perature rise. Properties k and c( are assumed to be 
independent of temperature and position. 

The problem may be stated in a simple way by 

neglecting the heat flow along the x-axis. Consider 
the geometry shown in Fig. 2, where now the heat flux 
over the semi-infinite body is a uniform step function 
of time. If z is the dwell time, that is the amount of 
time the spot on the surface is exposed to the uniform 
and constant heat flux, a mathematical statement of 
the problem is the solution of 

a*T 1 dT -=_- 
az* u at (34 

FIG. 1. Semi-infinite body heated over the surface by a mov- FIG. 2. Semi-infinite body heated over the surface with a 
ing heat source 26 wide. uniform heat flux for a finite time amount. 
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T(z, 0) = 0 for 0 < z < m (3b) 

_kdTw) ~ = q(t) = 1 go forO<t<r 

dz 0 for 1> z 
(3c) 

T(z, t) -+ 0 forz--+co,f>O (3d) 

where T is still the temperature rise and properties k 
and a are independent of temperature and position. 

In the following the differences between the solu- 
tions to problems (2) and (3) will be evaluated and 
suggestions for the use of the 1-D solution instead of 
the 2-D solution will be given, 

AVAILABLE SOLUTIONS 

The exact solution to the first problem for a semi- 
infinite solid is given by Munari [ 121, in quasi-station- 
ary (8 -+ cg) conditions and for I -+ cc 

T(x*, z*) = $ j_i s * exp [--(~*~/4a(B-0’))] 

Cl [4~(~-~‘)]“z 

(4) 

Expression (4) can also be derived taking to the limit 
(I -+ co) the solution given by Carslaw and Jaeger (p. 
270 in ref. [2]) for an infinite solid and is equivalent 
to the solution for a semi-infinite solid given by 
Carslaw and Jaeger (p. 269 in ref. [2]). In view of the 
follo~ng comparison, solution (4) is now written with 
reference to the fixed coordinates system. Let 

I_I = 8-0’ 

then expression (4) becomes 

(5) 

u (x+b)/u--t-t/f 1 
u (x-b)/v-t+p I> dk 

-. 
(2,U)‘Q ,U”z (6) 

Note that, for a given z, to the quasi-stationary tem- 
perature field in the moving coordinates system cor- 
respond equal temperature profiles, for each X, in the 
fixed coordinates system. Furthermore, if the dwell 
time of the hot spot over a point of the surface of the 
solid can be expressed as 

z = 26/v (7) 
the following dimensionless parameters can be 
defined : 

TGKZ, t,B) 
T+Gf,Z,5,B) = -q,2b,k @bl 

Note that 3 can be considered as the reciprocal of a 
Fourier number based on the dwell time r and the 
strip width 2b. Equation (6) can now be written in 
dimensionless form 

T+(X,Z,r,B) =ql=exp( -7) 
Cl 

i I 

(x/B”‘+ 1/2)-l+i 
x erf (2B)“2--- 

(21) i/Z I 

-erf (2B)“2 
[ 

(X/B”2- l/2)-r-tc d[ 
(2<)“” I> 112' (9) 

5 

The exact solution of the problem defined by equa- 
tions (3) is [9] 

T{z, t) = + (af)“’ * ierfc 
[ 1 --T-W 

(4&t) 
for t 6 r 

(lOa) 

and 

-[a(t-z)]‘~z *ierfc 
.(4a(lfr))‘1’ 11 for t > z. 

Let 

T+(Z,S,B 
T(Z, 5, B) = -._____ 
6Wk 

(lob) 

(11) 

then, by using equations (Sa), the dimensionless form 
of equations (10) are 

T+(Z,[,B)= B-1’2~“2ierfc(Z/~“2) for< < 1 

fW 

and 

T+(Z, 5, B) = B-“‘{< Ii’ ierfc (Z/r ‘I”) 

-(~-l)“*ierfc~Z~(~-l)‘/~]~ fort > 1. (12b) 

The surface temperature profiles as a function of 
time are shown in Fig. 3, according to both equations 
(12) and (9) for B = 1 and 4, the temperature being 
normalized with reference to the maximum tem- 
perature given by the 1-D model and the time being 
made dimensionless with reference to the interaction 
time. It is worth noting that, according to the 2-D 
model, when the hot spot reaches a surface region the 
local temperature is already higher than the initial one 
and the cooling rate at the surface is less than the 
1-D one. The maximum values of the temperature 
and the time at which they occur will be analysed in 
the next section. 
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FIG. 3. Dimensionless normalized surface temperature vs 
dimensionless time, according to the 2- and 1-D models. 

MAXIMUM TIME VALUE ANALYSIS 

The maximum values of temperature as a function 
of time are characteristic variables of the problem 
under consideration. According to the 2-D model, 
the same values of the maximum temperature are 
attained, for a given 2, at different 5 and X. Thus, a 
meaningful comparison can be made with reference 
to the ratio of the maximum time values of the tem- 
perature attained respectively in the 2-D field, for a 
given 2 and for X = JB/2 (X = !I), and in the 1-D 
field, for the same vaiue of 2 

W,S>B) = 
T2tO.lilW (JBP, Z t, B) 

T+ --. 
I 0.ma.x cc c-5 4 

(13) 

The evaluation of the numerator of equation (13) 
can be performed by deriving equation (9) for 
X = (B ‘j2)/2. This leads to 

aT+(JBAZ,5,4 = 1 
at -4 mexpc_z2.,l) 

27l cl 

x(exp[-B(i-(5-l))2/51 
-expI-B(i-S)*lilSi-‘dl. (14) 

Setting expression (14) equal to zero yields the value 
of f corresponding to T&max, for given values of Z 
and B. By suitable transformations, as shown in the 
Appendix, the terms on the right-hand side of 
expression (14) can be put in a form similar to the 
left-hand side of expression (5.29) given by Oberhet- 
tinger and Badii (p. 41 in ref. [13]). The first term 
becomes 

f 

m 
exp~-Z2/i~exp~-B~i-~(5-l))*/ili~~’~~ 

0 

= 2exp~2B(~-l)]K,{2[(Zz+B(~-1)2)B]’~2j (15) 

and the second 

f 

m 
exp(-Z*ji)exp[-B(i-_)*/rli-‘di 

0 

By introducing equations (15) and (16) into equation 
(14) we obtain 

e~p(-2B)K’,(2](.Z~+B(l-~)~)B]‘!~j 

-K0{2[(ZZ+B52)B]“2) = 0. (17) 

The roots of the transcendental equation (17) are the 
e values which, replaced into equation (9), give the 
maximum tem~rature attained for any Z for a given 
B. 

The denominator of equation (I 3) is given by 
expression (12a) for 5 = 1, i.e. for t = z, obviously 
only for Z = 0, that is 

T+(O, 1,B) = (EB)-‘~‘. (18) 

For Z > 0, the f values are the roots of the equation 
given by La Rocca f9] 

5 
&c-- l)lni_l= 2’ (19) 

which, substituted into equation (12b), yield the 
maximum temperature vaIues. 

RESULTS 

The roots of equations (17) and (19) were calculated 
by the Newton-Raphson method ; the modified 
second kind Bessel functions, evaluated through the 
expressions given in Chap. 9 of ref. [14], are affected 
by a relative error of magnitude 10h9. Maximum tem- 
perature values from equation (9), which contains 
non-straightforwardly integrable functions, were cal- 
culated by iterative application of Cavalieri-Simpson 
formulas, until the relative difference between the ith 
and the (i- 1)th values reached the magnitude of lo-‘. 
The error function in equation (9) and ierfc(x) in 
equations (12) were evaluated by the expressions given 
in Chap. 7 of ref. [14]. Calculations were made for 
10-4~B~102andO~Z~1. 

Figure 4 shows the roots of equation (17) vs B for 
fixed Z. For Z = 0 and small B values (0(10e4)) 5 -+ 
0.5 while for B + co, 5 -+ 1, that is the value of the 
root in Z = 0 for the I-D model. Consequently, note 
that at the surface the maximum temperature value 
is attained earlier according to the 2-D model than 
according to the 1 -D one : the smaller the B the greater 
is the advance. For any Z and for B -+ 00, obviously 
the 2-D roots tend to the 1-D roots. Furthermore, 
Fig. 4 suggests that for B values of order more than 
IO” the roots of 2-D model can be approximated with a 
reasonable accuracy by the simplified model. Finally, 
note that for a given B the greater Z the greater is the 
difference between the 2- and 1-D roots. 

Similar considerations are suggested by Fig. 5, 
where for fixed B the roots of equations (17) and some 
roots of equation (19) are reported vs 2. One can note 
that the roots of equation (19) practically lie on the 
curve for B = lo2 which, on the other hand, is nearly 
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FIG. 4. Roots of equation (17): time of maximum tem- 
perature vs B at various depths for a moving strip heat 

source. 

coincident with that for B = 10. Note that, for any B, 
there is a particular Z for which the I- and 2-D roots 
are equal. For Z greater than the above value, the 
maximum temperature values given by the 2-D model 
are reached later than those given by the 1-D model ; 
for Z smaller than this particular value the maximum 
temperature values are attained earlier and the smaller 
the B the smaller is Z. The lead in the 2-D model is 
due to the component along x of the heat flux which 
has already perturbed the surface points when the 
heat source impinges on them ; on the contrary, in the 
2-D model the heat flux along z is less than in the 1-D 
model and therefore in the inner layers the maximum 
temperature values are reached later. The effects of 
the heat source velocity, v, and of its width, 26, on the 
thickness of the advance region, for a given dwell time, 
r, are shown by the definition of B: for a fixed b, the 
smaller v (i.e. the greater r) the smaller is the thickness 
of the advance region. 
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FIG. 5. Roots of equation (17): time of maximum tem- 
perature vs depth at various B values for a moving strip heat 

source. 

Table 1 gives values of roots of equations (17) in 
the ranges of B and Z used in the applications. 

Ratio between the maximum temperature values 
Figure 6 plots the ratio R defined by equation (13) 

vs B for fixed Z. It allows the evaluation of the error, 
with reference to the maximum time values of the 
temperature, associated to the use of the simplified 
model for a given B. One can remark that R + 1 
for B + co, for any Z. Furthermore, the same figure 
shows that for B > 3 the use of the model for a semi- 
infinite body with a uniform heat flux at the surface 
for a time r introduces an error the maximum value 
of which is 7.2% for Z = 0.2. For any Z, errors not 
greater than 5% are involved for B not smaller than 
4.4; in the special case Z = 0, B must be not smaller 
than 3.9, that is a value close to that given in ref. [I 11. 
Here B = 3.5 was the suggested minimum value for 
using the simplified model, but no inherent error was 
pointed out. 

Table 2 provides values of R as a function of B and 
Z. 

Figure 7 shows the ratio R vs Z for a fixed B. One 
can note that each curve is not at a minimum in Z = 0 
and that all tend to unity for Z + co. This result was 
to be expected as both models foresee initial tem- 
perature for Z -+ co. 

Figure 8 compares, at Z = 0, the values of R for a 

Table 1. Values of dimensionless time at which maximum temperature is attained, given by equation (17) 

B z=o Z= 0.1 Z = 0.2 Z = 0.3 Z = 0.4 Z = 0.5 Z = 0.6 Z = 0.7 Z = 0.8 Z = 0.9 Z = 1.0 

1 0.83320 0.84982 0.90061 0.98810 1.11505 1.28340 1.49399 1.74685 2.04161 2.37786 2.75519 
2 0.88735 0.90022 0.94030 1.01159 1.11944 1.26858 1.46183 1.70002 1.98277 2.30927 2.67855 
3 0.91265 0.92389 0.95920 1.02323 1.12244 1.26302 1.44884 1.68104 1.95923 2.28229 2.64927 
4 0.92776 0.93802 0.97051 1.03022 1.12436 1.25998 1.44161 1.67063 1.94645 2.26790 2.63347 
5 0.93795 0.94755 0.97811 1.03490 1.12565 1.25804 1.43698 1.66398 1.93845 2.25878 2.62364 
6 0.94536 0.95446 0.98361 1.03827 1.12658 1.25666 1.43374 1.65937 1.93285 2.25252 2.61692 
7 0.95102 0.95973 0.98778 1.0408 1 1.12727 1.25564 1.43133 1.65597 1.92875 2.24796 2.61204 
8 0.95550 0.96390 0.99106 1.04279 1.12780 1.25483 1.42948 1.65339 l.92563 2.24449 2.60832 
9 0.95915 0.96729 0.99372 1.04439 1.12822 1.25419 1.42800 1.65132 1.92316 2.24175 2.60541 

10 0.96219 0.97011 0.99592 1.04569 1.12856 1.25365 1.42680 1.64964 1.92116 2.23954 2.60305 
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FIG. 6. Ratio of 2- to I-D maximum temperatures vs Bat various depths. 

Table 2. Ratio of 2- to 1-D maximum temperatures, given by equation (13) 

B z=o Z= 0.1 Z= 0.2 Z= 0.3 Z= 0.4 Z = 0.5 2 = 0.6 Z= 0.7 Z= 0.8 Z= 0.9 Z = 1.0 

1 0.87901 0.86216 0.85583 0.86008 0.87223 0.88829 0.90476 0.91965‘ 0.93226 0.94264 0.95109 
2 0.92345 0.91306 0.90963 0.91311 0.92175 0.93280 0.94386 0.95358 0.96159 0.96800 0.97309 
3 0.94243 0.93445 0.93275 0.93589 0.94284 0.95145 0.95989 0.96717 0.97307 0.97774 0.98139 
4 0.95328 0.94730 0.94595 0.94886 0.95475 0.96187 0.96872 0.97456 0.97925 0.98291 0.98577 
5 0.96039 0.95546 0.95459 0.95731 0.96247 0.96856 0.97434 0.97922 0.98311 0.98613 0.98848 
6 0.96546 0.96127 0.96072 0.96322 0.96790 0.97323 0.97824 0.98243 0.98576 0.98833 0.99032 
7 0.96928 0.96565 0.96533 0.96776 0.97193 0.97668 0.98110 0.98478 0.98768 0.98993 0.99165 
8 0.97236 0.96907 0.96892 0.97123 0.97505 0.97933 0.98329 0.98658 0.98915 0.99114 0.99266 
9 0.97468 0.97182 0.97181 0.97401 0.97754 0.98144 0.98503 0.98799 0.9903 1 0.99209 0.99345 

10 0.97667 0.97410 0.97419 0.97629 0.97957 0.98316 0.98644 0.98913 0.99124 0.99285 0.99409 

01 
0 0.2 0.4 0.6 2 0.6 1.0 

FIG. 7. Ratio of 2- to 1-D maximum temperatures vs Z at 
various B values. 

stationary heat source, the solution of which is given 
by Carslaw and Jaeger on p. 264 in ref. [2], and for a 
moving source. Note that at the surface the stationary 
source solution is approximated by the 1-D model 
with an error not greater than 5% for B > 3.2. The 
same indication was given also by Beck [15] for a 
different source geometry. 

CONCLUSIONS 

The exact solution to the quasi-steady state two- 
dimensional temperature distribution in a semi-infi- 
nite solid for a uniform strip heat source moving at a 
constant velocity along its surface has been analysed 
in detail. The maximum time temperature as a func- 
tion of the depth and the time at which it is attained 
were analytically treated. The solution to the above 
problem, which is particularly relevant in laser and 
electron beam surface processing, can be approxi- 
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FIG. 8. Ratios of 2- to 1-D maximum temperatures for stationary and moving heat sources vs B at the 
surface (2 = 0). 

mated by the 1-D semi-infinite model for fast and wide 
sources. 

A comparison of the two solutions has been made 
in terms of the two dimensionless numbers B and Z. 
Results are reported both in diagrams and in tables. 
They show that at the surface (Z = 0) the maximum 
temperature error related to the 1-D solution is less 
than 5% for B > 3.9. Nevertheless, even for B = 2 the 
error reaches 9%. It slightly increases with depth for 
Z values of practical interest (Z < 0.3). The maximum 
temperature in the 2-D solution is reached earlier or 
later than in the 1-D solution, depending on the depth, 
for a given B. 

A comparison is also made with the 2-D solution 
for a stationary strip source. Both 2-D solutions, 
stationary and moving, are well approximated by the 
I-D one for dwell Fourier numbers the magnitude of 
which is smaller than 10 m2. 
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APPENDIX 

The first term on the right-hand side of equation (14) can 
be written as 

s ~~~exp(-~‘/i~ex~{1~2-~i(S-l~+(S-~)21~/i}di 

= 
s 
0~~exp(-E~)exp{-[Z’+Bo2]:1+28(r-l)}d~. 

Let 

(AlI 

y=Z2+B(5-1)2; B=2B(5-1) (A2) 

by substituting equations (A2) into equation (Al) and 
remembering expression (5.29) on p. 41 of ref. [13], one 
obtains 

exp(P) Ilexp(--Bi)cxp(--9:i)di s 
= exp (B)2&[2(~@“*1 (.43) 

which yields expression (15). 
Expression (16) can be obtained in a similar manner. 
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COMPARAISON ENTRE DEUX MODELES DU CHAMP THERMIQUE DANS LES 
PROCEDES DE TRAITEMENT THERMIQUE SUPERFICIEL AVEC LASER ET FAISCEAUX 

D’ELECTRONS 

R&urn&-Dans les pro&d&s de traitement thermique superficiel avec laser et faisceaux d’electrons la 
connaissance du champ des temperatures est tres important et, en particulier, celle du maximum de 
temperature atteint. On analyse la solution pour le cas dune source chaude uniforme en forme de 
bande mobile & vitesse constante le long de la surface d’un corps semi-infini. Les auteurs pksentent une 
comparaison du modele approche unidimensionnel et du modble bidimensionnel. On donne les rapports 
entre les valeurs des temperatures maximales deduites des deux modtles et entre les temps oti elles sont 
atteintes. On en d&hut ainsi des indications pour tvaluer le domaine des variables dans lequel les resultats 

atteints par les deux mod&s s’accordent B peu pr&s. 

EIN VERGLEICH ZWISCHEN MODELLEN VON MIT LASER-ODER 
~L~KTRONENSTRAHL BEHANDELT~N TEMPERATURFELDERN 

Zusammenfassung-Die Kentnissen der termischen Feldes und im besonderem der hochsten erreichbaren 
Temperatur stellen bei Laser-oder Elektronenstrahl Oberllachenbehandlung ein sehr wichtiges Problem 
dar. Die zweidimensionale Losung einer gleichfiirmigen und strichformigen WIrmequelle die sich mit 
konstanter Geschwindigkeit auf der Oberlhiche eines halbunendlichen Korpers bewegt, wird analysiert. 
Ein Vergleich zwischen der eindimensionalen NHherung und dem halbunendlichen zweidimensionalen 
Model& wird beschrieben. Das VerhPltnis zwischen den hiichst erreichen Temperaturwerten und derer 
dem Model1 nach erforderlichen Best~hlungszeiten, wird vorgezeigt. Richtljnen zur ~stimmung des 
Parameterbereichs in dem die von beiden Modellen erholtenen Ergebnisse vergleichbar sind, werden 

angegeben. 

CPABHEHHE MOfiEIIEti PACgETA TEMHEPATYPHbIX HOJIEl;l HPH OBPABOTKE 
~OBEPXH~E~ ~A3EPHbIM II 3~EK~HHblM JIYqAMM 

AHIWTPI.OUI---npH o6pa6o’rxe nOBepXHOCTefi na3epHbIM B 3neKTpOHHbIM nysaMu B~XHO 3HaTb pacnpe- 

AeneHHe TeMnepaTypbI H MaKCHMWIbHO B03MOXHbIe ee 3Ha9eHsK.AHanHs~pyeTCR AByMepHOe pelueHHe 

Ann OAHOpOAHOI-0 UCTO'IHBKB Terma, Aeemyruerocn c n0cT0K~~0l CKOpOCTbIO Ha rIOBepXHOCTH nony- 

6eCKOHe'fHOrO Tena. npeACTaBneH0 CpaBHCHEie npa6nemerinbrx OAHOMepHOi! H AByMepHOii MOAenefi. 

npE%BeAeHO OTHOUIeHAe MaKCUMlUlbHbIX TeMl'IepaTyp, a TaKXe BpeMS HX J!,OCTHXeHHSI An% 3TUX AByX 

MoAene&.&wbr OLIeNKn Anana30Ha Ei3MeHeHNK IIe@2MeHHbtX,B npenenax KOTOpOrO pe3ynbTZiTbI,TIony- 


